Transfusion-associated graft-vs-host disease

Transfusion-associated graft-vs-host disease (GvHD) is a very rare complication of blood transfusion; there are no identifiable cases in the most recent SHOT report. This reduction in incidence has resulted from the implementation of universal leucodepletion. GvHD can complicate allogenic bone marrow transplants, but in those who are immunocompromised, it can occur after simple blood transfusion. Ninety per cent of cases are fatal. Donor-derived immune cells, particularly T-lymphocytes, mount an immune response against host tissue. Clinical features include a maculopapular rash (typically affecting the face, palms and soles), abdominal pain, diarrhoea and abnormal liver function tests. Destruction of bone marrow stem cells by donor T-lymphocytes causes pancytopenia. Prevention is by irradiation of blood products, which inactivates any donor lymphocytes.

Immunomodulation

The potential to modulate the immune system of transfusion recipients remains an exciting but controversial area of transfusion medicine. The prolonged survival of renal allografts in patients who have received pre-transplantation blood transfusions is evidence for this effect. Transfusion-related immune suppression is manifest as an increased risk of postoperative infections, increased tumour recurrence after surgical resection, activation of latent viral infection, improvement in immune inflammatory disease and prevention of recurrent miscarriage. These effects are thought to be initiated by donor leucocytes and are related to the Class I and Class II HLA antigens which they express. It is possible that the aetiology of immunomodulation is multifactorial as laboratory studies have shown a reduction in natural killer cell activity, IL-2 production, CD4/CD8 ratios and macrophage function.

References

PERIOPERATIVE NEUROPATHIES, BLINDNESS AND POSITIONING PROBLEMS

Mark A. Warner, Professor of Anesthesiology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
Email: mark.warner@mayo.edu

Perioperative neuropathies, vision loss, and positioning-related problems have received increasing attention from the lay press, plaintiffs’ lawyers, the anesthesiology community, and clinical researchers in recent years. This review will provide an update of current findings and discuss possible mechanisms of injury for these potentially devastating problems.

UPPER EXTREMITY NEUROPATHIES

Any nerve that passes into the upper extremity may sustain an injury or convert from an abnormal but asymptomatic state to a symptomatic state during the perioperative period. Of the major nerve structures of the upper extremity, the ulnar nerve and brachial plexus nerves are the most common to become symptomatic and lead to major disability during the perioperative period. 1-3

Ulnar neuropathy

Improper anesthetic care and patient malpositioning
have been implicated as causative factors in the development of ulnar neuropathies since reports by Budinger and Garriques in the 1890s. These factors are likely to play an aetiological role for this problem in some surgical patients. Other factors, however, may contribute to the development of postoperative ulnar neuropathies. In a series of twelve inpatients with newly acquired ulnar neuropathy, Wadsworth and Williams determined that external compression of an ulnar nerve during surgery was a factor in only two patients. A prospective study at the Mayo Clinic found that medical, as well as surgical, patients develop ulnar neuropathies during inpatient and outpatient care. It is clear that both surgical and medical patients may develop ulnar neuropathies during or after an episode of care.

Typically, anesthesia-related ulnar nerve injury is thought to be associated with external nerve compression or stretch caused by malpositioning during the intraoperative period. While this implication may be true for some patients, three findings suggest that other factors may contribute. First, a retrospective study has found male gender, high body mass index (≥ 38) and prolonged bedrest postoperatively to be associated with these ulnar neuropathies. Of these, male gender is the factor most commonly associated with perioperative ulnar neuropathy. Various reports suggest that 70-90% of patients who develop this problem are male. Second, many patients with perioperative ulnar neuropathies have a high frequency of contralateral ulnar nerve conduction dysfunction. This finding suggests that many of these patients are likely to have asymptomatic but abnormal ulnar nerves prior to their anaesthetics, and these abnormal nerves may become symptomatic during the perioperative period. Finally, many patients do not notice or complain of ulnar nerve symptoms until more than 48 hours after their surgical procedures. A prospective study of ulnar neuropathy in 1,502 surgical patients found that none of the patients developed symptoms of the neuropathy during the first two postoperative days.

Currently available data suggest that perioperative ulnar neuropathy may be caused by factors other than improper patient positioning and padding of extremities during surgery. Elbow flexion, especially to greater than 100°, can elongate the ulnar nerve and tightening the cubital tunnel retinaculum, directly compressing the ulnar nerve (Figures 1-3).
clinical significance of this finding, however, is unclear. Morell et al14 found that elbow flexion did not inhibit ulnar nerve perception, while direct pressure on the ulnar nerve in the post-condylar groove did.

External compression of the ulnar nerve in the absence of elbow flexion also may damage the nerve. Compression within the bony groove posterior to the medial epicondyle may be possible. In a very innovative study Prielipp et al15 have shown that forearm rotation, especially pronation, can increase pressure in the postcondylar groove (Figure 4). Contreras et al16 have noted that the nerve may be more easily compressed by external forces distal to the medial epicondyle where the nerve and its associated artery are quite superficial than in the postcondylar groove (Figure 5).

![Figure 4: In supination, the pressure over the ulnar nerve is uniformly low, and most of the data are clustered around the zero line. Prielipp RC, et al: Anesthesiology 1999; 91:345-354.](image)

![Figure 5: The ulnar nerve and its primary blood supply in the proximal forearm, the posterior ulnar recurrent artery, are very superficial and appear to be susceptible to compression from external pressure as they pass posteriomedially to the tubercle of the coronoid process. The tubercle is larger in men than women, and the adipose layer in this area is thinner in men.16](image)

Brachial plexus neuropathy

Brachial plexus neuropathies may masquerade as ulnar neuropathies or be associated with symptoms that suggest injuries to other nerve structures. In general, brachial plexus neuropathies are associated with median sternotomy.17-19 This neuropathy often involves stretch or compression of the brachial plexus during sternal separation.18,19 Other potential mechanisms of injury include direct trauma from fractured first ribs. In general, brachial plexus neuropathy does not appear to be related to a patient’s arm position or padding during the sternotomy and related procedures.20

The brachial plexus is also vulnerable to stretch in a patient who is positioned prone (Figure 6).21 Stretch of the brachial plexus, especially its lower trunks, is most likely to occur when the head is turned to the contralateral side, the ipsilateral shoulder is abducted, and the ipsilateral elbow is bent. Other potential problems are noted in the legend for Figure 6. Although this position is commonly used during surgical procedures and the frequency of perioperative brachial plexus neuropathy is low, it would appear prudent to place the arms at the patient’s side whenever possible to decrease the risk of brachial plexus stretching. Kamel and colleagues have recently shown that the frequency of SSEP (somato-sensory evoked potential) abnormalities is 3-fold less with arms tucked at the side than elevated in a “surrender” position.22

LOWER EXTREMITY NEUROPATHIES

Although neuropathies of the lower extremities may occur in a variety of patient postures, most of these occur in patients who are undergoing procedures while placed in a lithotomy position. These neuropathies have often been considered to be preventable and to occur because of poor intraoperative care (e.g. improper positioning or padding) or judgment (e.g. excessively prolonged use of lithotomy position).23 This perception has significant impact on the outcomes of medicolegal cases involving these types of problems.24 Interestingly, the majority of plaintiffs in medicolegal cases involving lower extremity neuropathies name anesthesiologists and surgeons in their complaints. In contrast, plaintiffs in cases involving upper extremity nerves often do not name surgeons.

A number of studies have suggested that there are many factors other than improper intraoperative care that may contribute to the risk of lower extremity nerve injury.25-27 A 1994 retrospective review of patients in lithotomy positions found that the most common lower extremity neuropathies were the common peroneal (81%), sciatic (15%), and femoral (4%).28 The authors found specific patient characteristics that contributed to the risk of neuropathy. A more recent prospective study found that the longer patients were in lithotomy, the greater their risk of developing a neuropathy.29 The obturator and lateral femoral cutaneous (LFC) nerve were most often involved in this study.

Obturator and Lateral Femoral Cutaneous Neuropathies

Litwiller et al30 subsequently evaluated the strain of the obturator and LFC nerves associated with
Femoral Neuropathy

Unlike most other neuropathies in which the anaesthesia provider is often considered to have acted improperly in order for the neuropathy to occur, those involving the femoral nerve and its cutaneous branches often are considered to result from improper placement of abdominal wall retractors and direct compression of the nerve. When related to retractors, the assumption is that retractors place continuous pressure on the iliopsoas muscle and either stretch the nerve or cause it to become ischemic by occluding the external iliac artery or penetrating vessels of the nerve.

31

PRACTICAL CONSIDERATIONS FOR NEUROPATHIES

Efforts to prevent perioperative neuropathies are frequently debated, and there is often confusion on how to manage a neuropathy once it has occurred. In general, there are no data to support recommendations on any of these issues. Therefore, the following opinions have been formulated by personal experience, guided by advice from neurologists who primarily care for patients with peripheral neuropathies, and seasoned or supported by speculation derived from anecdotal case reports.

Padding exposed peripheral nerves

Many types of padding materials are advocated to protect exposed peripheral nerves. They often consist of cloth (e.g. blankets and towels), foam sponges (e.g. “eggcrate” foam), and gel pads. There are no data to suggest that any of these materials is more effective than any other, or that any is better than no padding at all. A good rule-of-thumb would be to position and pad exposed peripheral nerves to (1) prevent their stretch beyond normally tolerated limits while awake,
The increases in intraocular pressure.

that prone-positioned, anesthetised patients develop
The aetiology of PION is unknown. There is no doubt
In contrast, PION appears to be the predominant
is approximately balanced between AION and PION.
In the absence of surgical excision or trauma
to visual tissues, most cases involve anterior or
posterior ischemic optic neuropathy (AION and
PION, respectively), central retinal artery occlusion,
or undefined ischemia to the cerebral cortex. There
are very few cases reported in the past 2 decades in
which direct pressure to the globe is implicated in
perioperative blindness. Blindness in cardiac patients
is approximately balanced between AION and PION.
In contrast, PION appears to be the predominant
problem in prone-positioned patients.

The aetiology of PION is unknown. There is no doubt
that prone-positioned, anesthetised patients develop
an increase in intraocular pressure. This increase
appears related, in part, to the impact of gravity and
increased central venous pressure in prone-positioned
patients. Posture-induced changes in the anatomy
and function of the iris and lens also may contribute.
This potential contribution of intraocular anatomy in
prone-positioned patients has been supported by the
finding that timolol solution can attenuate the increase
in intraocular pressure. Anemia and hypotension
have been considered potential aetiologies, primarily
based on information propagated by isolated case
reports and small case series, but an exhaustive
review on this topic, as it pertains to spine surgery
patients, has found no evidence of an association
between these factors and perioperative visual loss.
Periorbital oedema may occur in prone-positioned
patients, or vertically-inverted study subjects, but
this oedema does not appear to be correlated with
visual loss. There is speculation (without data) that
engorgement of the veins in and around the optic nerve
and its sheath may cause compartment compression
of the optic nerve sheath, limiting arterial perfusion
to its posterior extension. This posterior extension of
the nerve just anterior to the optic chiasm, has few major
arterial vessels and may have an increased risk of low
perfusion.

Risk Factors
There are sufficient numbers of cases in cardiac
surgical patients who experience substantial blood loss.
Nuttall et al found in cardiac surgical patients that patient factors
(advanced age and arteriosclerosis), procedure issues
(prolonged pump perfusion and surgical disruption of
particulate matter), and practice patterns (deliberate
postoperative anemia and intraoperative hypotension)
are associated with an increased frequency of vision
loss. There are insufficient numbers of cases in any
series to evaluate risk factors in non-cardiac surgical
patients. However, a recent report from the ASA’s
Closed Claims Postoperative Visual Loss Registry
suggests that most cases of vision loss in spinal
surgery occur in patients who are positioned prone,
undergo procedures lasting more than 6 hours, and
who experience substantial blood loss.

General Guidelines
The conclusions of the ASA Task Force on Perioperative
Blindness are shown in Table 1.

SEVERAL POTENTIAL CATASTROPHIC
POSITIONING PROBLEMS
Spinal cord ischemia or infarction from lumbar
hyperextension
Many patients who undergo pelvic procedures using
an abdominal approach are positioned supine with
their lumbar spines hyperextended in an attempt to
increase surgeon visibility into the lower pelvis. This
practice is reasonable as long as the mechanism for
hyperextending the lumbar spine is limited to the
maneuvers allowed by operating room tables (e.g.
raising the kidney rest). Tables manufactured within

What to do if your patient develops a neuropathy?
Although each situation is unique and requires careful
assessment, the following guidelines may suggest a
basic course of action that will lead to appropriate
care:

• Is the neuropathy sensory or motor? Sensory
lesions are more frequently transient than motor
lesions. If the symptoms are numbness and/or
tingling only, it may be appropriate to inform the
patient that many of these neuropathies will
resolve during the first 5 days. The patient should
be instructed to avoid postures that might compress
or stretch the involved nerve. Arrangements
should be made for frequent contact with the
patient. A call to alert a neurologist would be
appropriate, and if the symptoms still persist
on postoperative day 5, the neurologist should be
consulted.

• If the neuropathy has a motor component,
a neurologist should be consulted immediately.
Electromyographic studies may be needed to
assess the location of any acute lesion. This
knowledge may direct an appropriate treatment
plan. The studies may also demonstrate chronic
abnormalities of the nerve or, if applicable, the
contralateral nerve.

BLINDNESS
Over the past decade there has been speculation
that the frequency of perioperative blindness has
been increasing, especially in patients undergoing
procedures while positioned prone for prolonged
periods (e.g. major spine surgeries). Interestingly, there
are few data to support this speculation. The rate of
spinal fusion procedures has, however, increased in
the past decade and may be a contributing factor.
It appears that most non-surgically related postoperative
vision loss occurs in patients undergoing cardiac
procedures, followed in frequency by patients
undergoing spine surgery.

Potential Pathologies
In the absence of surgical excision or trauma
to visual tissues, most cases involve anterior or
posterior ischemic optic neuropathy (AION and
PION, respectively), central retinal artery occlusion,
or undefined ischemia to the cerebral cortex. There
are very few cases reported in the past 2 decades in
which direct pressure to the globe is implicated in
perioperative blindness. Blindness in cardiac patients
is approximately balanced between AION and PION.
In contrast, PION appears to be the predominant
problem in prone-positioned patients.

The aetiology of PION is unknown. There is no doubt
that prone-positioned, anesthetised patients develop
an increase in intraocular pressure. This increase
the U.S. do not allow hyperextension of the lumbar spine to greater than 10°. When excessive padding is introduced under the lumbar spine to gain additional hyperextension, however, the degree of hyperextension may exceed 10°. The 10° angle is important because there are no reports of anterior spinal cord ischemia when patients are positioned using only the table mechanisms to induce lumbar hyperextension. When additional padding or other maneuvers are used to increase hyperextension, however, the spinal cord may become ischemic and infarct.

Thoracic outlet obstruction

Elevation of the arms at the shoulders to greater than 90° abduction may be associated with thoracic outlet obstruction in some patients. Patients positioned prone and who may have their shoulders abducted to greater than 90° (i.e. a “surrender” position) should be asked preoperatively if elevation of their arms causes cold, pain, or tingling. These symptoms suggest potential for thoracic outlet obstruction and should be considered when positioning patients. Most patients are most comfortable with their arms at their sides when positioned prone, and many procedures in prone-positioned patients can be performed when the arms are tucked at the sides.

References
